
Laurent DUHEM – Intel Software EMEA

Credit: Intel® Distribution for Python* engineering team



How Intel works in Open Source

Working Groups
Security

High Performance
Virtualization & Manageability

Power Efficiency
Connectivity 

Graphics
Storage & Networking

Orchestration

Foundation Participation
Apache Foundation

CNCF
LF Edge

Linux Foundation
OpenStack 

…

Technical Contributions
Software Architects

Maintainers
Thousands of Software Engineers
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Linux Kernel Contributions
By percentage 

Source: lwn.net
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We Contribute Across System Software Stack

Orchestration 
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The Reality of “Data Centric Computing”

Python
Interpreter 

GIL

C
Optimizing compiler

Parallel run-times

100x-1000x performance gap

Performance 
Limited

• Existing analytics solutions are inefficient (and non-
scalable)

• E.g. pandas

Productivity 
Limited

• Existing analytics scale-out solutions are complex or 
do not exist

• E.g. nothing exists for pandas

Scalability 
Limited

• Typical data scientist only analyzes a small portion
(probably 10%) of available data 
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High Performance Python

Python

C

more nodes,
more cores, 
more threads, 
wider vectors, …

Intel® Performance Libraries

(generations of processors)

Libraries Thin layer in Python or Cython

Native highly optimized libraries: Intel® MKL(1), DAAL(2)

Vectorization support
threading runtimes

Deliver Python technologies that scale-up/out entire data analytics pipeline in 
productive way = Intel® Distribution for Python

1Intel® Math Kernel Library
2Intel® Data Analytics Acceleration Library
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What’s Inside Intel® Math Kernel Library

Linear 
Algebra

BLAS

LAPACK

ScaLAPACK

Sparse BLAS

Iterative sparse 
solvers

PARDISO*

Cluster Sparse 
Solver

FFTs

Multidimensional

FFTW interfaces

Cluster FFT

Vector 
RNGs

Congruential

Wichmann-Hill

Mersenne Twister

Sobol

Neirderreiter

Non-deterministic

Summary 
Statistics

Kurtosis

Variation 
coefficient

Order statistics

Min/max

Variance-
covariance

Vector 
Math

Trigonometric

Hyperbolic 

Exponential

Log

Power

Root

& More

Splines

Interpolation

Trust Region

Fast Poisson 
Solver
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Speedup Analytics & Machine Learning with
Intel® Data Analytics Acceleration Library (Intel® DAAL)

8

 Highly tuned functions for classical machine learning & 
analytics performance from datacenter to edge running 
on Intel® processor-based devices

 Simultaneously ingests data & computes results for 
highest throughput performance

 Supports batch, streaming & distributed usage models 
to meet a range of application needs 

 Includes Python*, C++, Java* APIs, & connectors to 
popular data sources including Spark* & Hadoop

Pre-processing Transformation Analysis Modeling Decision Making

Decompression,
Filtering, 

Normalization

Aggregation,
Dimension Reduction

Summary Statistics
Clustering, etc.

Machine Learning (Training)
Parameter Estimation

Simulation

Forecasting
Decision Trees, etc.

Validation

Hypothesis Testing
Model Errors 

What’s New in the 2019 Release
New Algorithms

 Logistic Regression, most widely-used classification algorithm

 Extended Gradient Boosting Functionality for inexact split 
calculations & user-defined callback canceling for greater flexibility

 User-defined Data Modification Procedure supports a wide 
range of feature extraction & transformation techniques

Learn More: software.intel.com/daal
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Ecosystem compatibilityGreater ProductivityFaster Performance
Supports Python 2.7 & 3.6, Conda & PIP

Operating System: Windows*, Linux*, MacOS1*

Intel® Architecture Platforms

Performance Libraries, Parallelism, 
Multithreading, Language Extensions 

 Accelerated NumPy/SciPy with Intel® 
MKL1 & Intel® DAAL2

 Data analytics, machine learning & deep 
learning with scikit-learn, daal4py

 Scale with Numba* & Cython*

 Includes optimized mpi4py, works with 
Dask* & PySpark*

 Optimized for latest Intel® architecture

 Prebuilt & optimized packages for 
numerical computing, machine/deep 
learning, HPC, & data analytics

 Drop in replacement for existing Python-
No code changes required

 Jupyter* notebooks, Matplotlib included

 Free download & free for all uses 
including commercial deployment

 Supports Python 2.7 & 3.6, optimizations 
integrated in Anaconda* Distribution

 Distribution & optimized packages available 
via Conda, PIP, APT GET, YUM, & DockerHub, 
numerical performance optimizations 
integrated in Anaconda Distribution

 Optimizations upstreamed to main Python 
trunk

 Priority Support with Intel® Parallel Studio XE

1Intel® Math Kernel Library
2Intel® Data Analytics Acceleration Library

Prebuilt & Accelerated Packages

Accelerate Python* with Intel® Distribution for Python*
High Performance Python* for Scientific Computing, Data Analytics, Machine & Deep Learning

Learn More: software.intel.com/distribution-for-python

https://software.intel.com/en-us/c-compilers
https://software.intel.com/en-us/c-compilers
https://software.intel.com/en-us/c-compilers
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scikit-learn

Accelerating Machine Learning

Intel® Data Analytics Acceleration 
Library (DAAL) 

Try it out!  conda install -c intel scikit-learn

daal4py

Intel® Math Kernel 
Library (MKL)

Intel® Threading 
Building Blocks (TBB)

PCA
KMeans
LinearRegression
Ridge
SVC
pairwise_distances
logistic_regression_path

Use directly for
• Scaling to multiple nodes
• Pickable
• Non-homogeneous 

dataframes
• Streaming data

Scikit-Learn 
Equivalents

Scikit-Learn API
Compatible

daal4py.sklearn

Intel®
MPI

KNeighborsClassifier
RandomForestClassifier
RandomForestRegressor
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Accelerating scikit-learn through daal4py

> python -m daal4py <your-scikit-learn-script>
Monkey-patch any scikit-learn

on the command-line

import daal4py.sklearn
daal4py.sklearn.patch_sklearn()

Monkey-patch any scikit-learn
programmatically

Scikit-learn with daal4py patches applied
passes scikit-learn test-suite
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Intel® DAAL Algorithms supported by daal4py
Data Transformation and Analysis

Basic statistics 
for datasets

Low order 
moments

Variance-
Covariance 

matrix

Correlation and 
dependence

Cosine 
distance

Correlation 
distance

Matrix factorizations

SVD

QR

Cholesky

Dimensionality 
reduction 

PCA

Outlier detection

Association rule 
mining (Apriori)

Univariate

MultivariateQuantiles

Order 
statistics

Optimization solvers 
(SGD, AdaGrad, lBFGS)

Math functions
(exp, log,…)

Algorithms supporting batch, online and/or distributed processing

Algorithms supporting batch processing

12
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Intel® DAAL Algorithms supported by daal4py
Machine Learning

Supervised 
learning

Regression

Linear
Regression

Classification

Weak 
learner*

Boosting*

(Ada, Brown, Logit)

Naïve Bayes

kNN

Support Vector Machine

Unsupervised 
learning

K-Means 
Clustering

EM for GMM

Collaborative 
filtering

Alternating
Least

Squares

Ridge 
Regression

Algorithms supporting batch, online and/or distributed processing

Algorithms supporting batch processing

Decision Forest

Decision Tree

GradientBoosting

*Expected with DAAL® 2020

13
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import daal4py as d4p

# daal4py accepts data as CSV files, numpy arrays or pandas dataframes
# here we let daal4py load process-local data from csv files
data = "kmeans_dense.csv"

# Create algob object to compute initial centers
init = d4p.kmeans_init(10, method="plusPlusDense")
# compute initial centers
ires = init.compute(data)
# results can have multiple attributes, we need centroids
centroids = ires.centroids
# compute initial centroids & kmeans clustering
result = d4p.kmeans(10).compute(data, centroids)

K-Means using daal4py 
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import daal4py as d4p

# initialize distributed execution environment
d4p.daalinit()

# daal4py accepts data as CSV files, numpy arrays or pandas dataframes
# here we let daal4py load process-local data from csv files
data = "kmeans_dense_{}.csv".format(d4p.my_procid())

# compute initial centroids & kmeans clustering
init = d4p.kmeans_init(10, method="plusPlusDense", distributed=True)
centroids = init.compute(data).centroids
result = d4p.kmeans(10, distributed=True).compute(data, centroids)

mpirun -n 4 python ./kmeans.py

Distributed K-Means using daal4py
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Strong & Weak Scaling via daal4py
Hardware

Intel(R) Xeon(R) Gold 6148 CPU @ 
2.40GHz, EIST/Turbo on

2 sockets, 20 Cores per socket

192 GB RAM

16 nodes connected with Infiniband

Operating 
System

Oracle Linux Server release 7.4

Data Type double

On a 32-node cluster (1280 cores) daal4py computed K-
Means (10 clusters) of 1.12 TB of data in 107.4 seconds and 
35.76 GB of data in 4.8 seconds.

On a 32-node cluster (1280 cores) daal4py computed linear 
regression of 2.15 TB of data in 1.18 seconds and 68.66 GB 
of data in less than 48 milliseconds.
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Scalable Python Solutions in Incubation

HPAT daal4py

• Statically compiles analytics code to binary

• Simply annotate with @hpat.jit

• Built on Anaconda Numba compiler

Drop-in acceleration of Python ETL
(Pandas, Numpy & select custom Python)

Ease-of-use of scikit-learn 
+ Performance of DAAL

Automatically scales to multiple nodes with MPI

• High-level Python API for DAAL

• 10x fewer LOC wrt DAAL for single node, 

100x fewer LOC wrt DAAL for multi-node
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Software Architecture

ParallelAccelerator

HPAT

Numba

LLVM

Distributed-memory parallelism, Data I/O, Data frames

Loop parallelism (Numpy, explicit), shared-memory

Compile sequential Python/Numpy

Binary code generation

Now in 
Numba

MPI parallel runtime
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HPAT’s Scope of Functionalities (Technical Preview)

Operations

• Python/Numpy basics

• Statistical operations (mean, std, var, …)

• Relational operations (filter, join, groupby)

• Custom Python functions (apply, map)

Data

• Missing values

• Time series, dates

• Strings, unicode

• Dictionaries

• Pandas

Interoperability
• I/O integration (CSV, Parquet, HDF5, Xenon)

• Daal4py integration

Extend Numba to support



https://github.com/IntelPython

22

https://github.com/IntelPython
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Questions?

Intel® Distribution for Python*
https://anaconda.org/intel
https://software.intel.com/en-us/distribution-for-python
https://intelpython.github.io/daal4py
https://github.com/IntelLabs/hpat

https://software.intel.com/en-us/distribution-for-python


24
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Accelerating pandas CSV read

Intel(R) Xeon(R) CPU E5-2699 v4: 2.20GHz; 
1chreads per core; 22 cores per socket; 2 sockets
Intel(R) Xeon(R) Platinum 8175M CPU: 2.50GHz; 2 
threads per core; 24 cores per socket;  2 sockets
Skylake 8180 S2P2C01B: 2.5GHz
1 thread per core; 28 cores per socket; 2 sockets

Patches merged to pandas mainline:
https://github.com/pandas-dev/pandas/pull/25804
https://github.com/pandas-dev/pandas/pull/25784

70x-81x 
speedup

https://github.com/pandas-dev/pandas/pull/25804
https://github.com/pandas-dev/pandas/pull/25784
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$ mpirun -n 4 python ./process_times.py

Accelerating Pandas using HPAT

import pandas as pd
import hpat

@hpat.jit
def process_times():

df = pq.read_table(‘data.parquet’).to_pandas();
df[‘event_time’] = pd.DatetimeIndex(df[‘event_time’])
df[‘hr’] = df.event_time.map(lambda x: x.hour)
df[‘minute’] = df.event_time.map(lambda x: x.minute)
df[‘second’] = df.event_time.map(lambda x: x.second)
df[‘minute_day’] = df.apply(lambda row: row.hr*60 + row.minute, axis = 1)
df[‘event_date’] = df.event_time.map(lambda x: x.date())
df[‘indicator_cleaned’] = df.indicator.map(lambda x: -1 if x == ‘na’ else int(x))
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Xeon
Close to native code Umath Performance with Intel Python 2019   
Compared to Stock Python packages on Intel® Xeon processors
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Stock Python Intel® Distribution for Python 2019

Configuration: Stock Python: python 3.6.6 hc3d631a_0 installed from conda, numpy 1.15, numba 0.39.0, llvmlite 0.24.0, scipy 1.1.0, scikit-learn 0.19.2 installed from pip;Intel Python: Intel Distribution for 
Python 2019 Gold: python 3.6.5 intel_11, numpy 1.14.3 intel_py36_5, mkl 2019.0 intel_101, mkl_fft 1.0.2 intel_np114py36_6,mkl_random 1.0.1 intel_np114py36_6, numba 0.39.0 intel_np114py36_0, llvmlite
0.24.0 intel_py36_0, scipy 1.1.0 intel_np114py36_6, scikit-learn 0.19.1 intel_np114py36_35; OS: CentOS Linux 7.3.1611, kernel 3.10.0-514.el7.x86_64; Hardware: Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz (2 
sockets, 18 cores/socket, HT:off), 256 GB of DDR4 RAM, 16 DIMMs of 16 GB@2666MHz
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific 
computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you 
in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Source: Intel 
Corporation - performance measured in Intel labs by Intel employees. Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that 
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of 
any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to 
Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this 
notice. Notice revision #20110804.

87%
native efficiency on

Black-Scholes Formula code
with Intel numpy + numba.
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Xeon
Close to native code scikit-learn Performance with Intel Python 2019   
Compared to Stock Python packages on Intel® Xeon processors
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Function & Problem Size

Stock Python Intel® Distribution for Python 2019

Configuration: Stock Python: python 3.6.6 hc3d631a_0 installed from conda, numpy 1.15, numba 0.39.0, llvmlite 0.24.0, scipy 1.1.0, scikit-learn 0.19.2 installed from pip;Intel Python: Intel Distribution for 
Python 2019 Gold: python 3.6.5 intel_11, numpy 1.14.3 intel_py36_5, mkl 2019.0 intel_101, mkl_fft 1.0.2 intel_np114py36_6,mkl_random 1.0.1 intel_np114py36_6, numba 0.39.0 intel_np114py36_0, llvmlite
0.24.0 intel_py36_0, scipy 1.1.0 intel_np114py36_6, scikit-learn 0.19.1 intel_np114py36_35; OS: CentOS Linux 7.3.1611, kernel 3.10.0-514.el7.x86_64; Hardware: Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz (2 
sockets, 18 cores/socket, HT:off), 256 GB of DDR4 RAM, 16 DIMMs of 16 GB@2666MHz
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific 
computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you 
in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Source: Intel 
Corporation - performance measured in Intel labs by Intel employees. Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that 
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of 
any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to 
Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this 
notice. Notice revision #20110804.
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RandomForest

• daal4py.sklearn.ensemble.RandomForestClassifier
• daal4py.sklearn.ensemble.RandomForestRegressor

• only support dense features, and single response
• produce similar output to scikit-learn’s own classes, i.e. populate estimators_ attribute, 

so that it can be used in existing Python viz. pipeline.
• prediction is using DAAL’s model, rather than estimators_
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Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. 
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or 
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for 
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the 
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. 
Notice revision #20110804
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The benchmark results reported above may need to be revised as additional testing is conducted. The results depend on the specific platform configurations and 
workloads utilized in the testing, and may not be applicable to any particular user’s components, computer system or workloads. The results are not necessarily 
representative of other benchmarks and other benchmark results may show greater or lesser impact from mitigations.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark
and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause 
the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the 
performance of that product when combined with other products.  For more complete information visit www.intel.com/benchmarks.  

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY 
RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, 
RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation 
in the U.S. and other countries.
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