
Laurent DUHEM – Intel Software EMEA

Credit: Intel® Distribution for Python* engineering team

How Intel works in Open Source

Working Groups
Security

High Performance
Virtualization & Manageability

Power Efficiency
Connectivity

Graphics
Storage & Networking

Orchestration

Foundation Participation
Apache Foundation

CNCF
LF Edge

Linux Foundation
OpenStack

…

Technical Contributions
Software Architects

Maintainers
Thousands of Software Engineers

Intel Confidential

2016 2017 20182015

Linux Kernel Contributions
By percentage

Source: lwn.net

0

2

4

6

8

10

12

14

16
A

u
g

-1
5

S
e

p
-1

5

O
c
t-

1
5

N
o

v
-1

5

D
e

c
-1

5

Ja
n

-1
6

F
e

b
-1

6

M
a

r-
1

6

A
p

r-
1

6

M
a

y
-1

6

Ju
n

-1
6

Ju
l-

1
6

A
u

g
-1

6

S
e

p
-1

6

O
c
t-

1
6

N
o

v
-1

6

D
e

c
-1

6

Ja
n

-1
7

F
e

b
-1

7

M
a

r-
1

7

A
p

r-
1

7

M
a

y
-1

7

Ju
n

-1
7

Ju
l-

1
7

A
u

g
-1

7

S
e

p
-1

7

O
c
t-

1
7

N
o

v
-1

7

D
e

c
-1

7

Ja
n

-1
8

F
e

b
-1

8

M
a

r-
1

8

Intel

Red Hat

SUSE

IBM

TI

Linaro

Google

Samsung

We Contribute Across System Software Stack

Orchestration

Libraries and
Runtimes

Hypervisor/
container

S
o

ft
w

a
re

 la
y

e
rs

OS Enabling

Application
layer

BigDL on
Spark

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

The Reality of “Data Centric Computing”

Python
Interpreter

GIL

C
Optimizing compiler

Parallel run-times

100x-1000x performance gap

Performance
Limited

• Existing analytics solutions are inefficient (and non-
scalable)

• E.g. pandas

Productivity
Limited

• Existing analytics scale-out solutions are complex or
do not exist

• E.g. nothing exists for pandas

Scalability
Limited

• Typical data scientist only analyzes a small portion
(probably 10%) of available data

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

High Performance Python

Python

C

more nodes,
more cores,
more threads,
wider vectors, …

Intel® Performance Libraries

(generations of processors)

Libraries Thin layer in Python or Cython

Native highly optimized libraries: Intel® MKL(1), DAAL(2)

Vectorization support
threading runtimes

Deliver Python technologies that scale-up/out entire data analytics pipeline in
productive way = Intel® Distribution for Python

1Intel® Math Kernel Library
2Intel® Data Analytics Acceleration Library

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
71Available only in Intel® Parallel Studio Composer Edition.

What’s Inside Intel® Math Kernel Library

Linear
Algebra

BLAS

LAPACK

ScaLAPACK

Sparse BLAS

Iterative sparse
solvers

PARDISO*

Cluster Sparse
Solver

FFTs

Multidimensional

FFTW interfaces

Cluster FFT

Vector
RNGs

Congruential

Wichmann-Hill

Mersenne Twister

Sobol

Neirderreiter

Non-deterministic

Summary
Statistics

Kurtosis

Variation
coefficient

Order statistics

Min/max

Variance-
covariance

Vector
Math

Trigonometric

Hyperbolic

Exponential

Log

Power

Root

& More

Splines

Interpolation

Trust Region

Fast Poisson
Solver

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Speedup Analytics & Machine Learning with
Intel® Data Analytics Acceleration Library (Intel® DAAL)

8

 Highly tuned functions for classical machine learning &
analytics performance from datacenter to edge running
on Intel® processor-based devices

 Simultaneously ingests data & computes results for
highest throughput performance

 Supports batch, streaming & distributed usage models
to meet a range of application needs

 Includes Python*, C++, Java* APIs, & connectors to
popular data sources including Spark* & Hadoop

Pre-processing Transformation Analysis Modeling Decision Making

Decompression,
Filtering,

Normalization

Aggregation,
Dimension Reduction

Summary Statistics
Clustering, etc.

Machine Learning (Training)
Parameter Estimation

Simulation

Forecasting
Decision Trees, etc.

Validation

Hypothesis Testing
Model Errors

What’s New in the 2019 Release
New Algorithms

 Logistic Regression, most widely-used classification algorithm

 Extended Gradient Boosting Functionality for inexact split
calculations & user-defined callback canceling for greater flexibility

 User-defined Data Modification Procedure supports a wide
range of feature extraction & transformation techniques

Learn More: software.intel.com/daal

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
91Available only in Intel® Parallel Studio Composer Edition.

Ecosystem compatibilityGreater ProductivityFaster Performance
Supports Python 2.7 & 3.6, Conda & PIP

Operating System: Windows*, Linux*, MacOS1*

Intel® Architecture Platforms

Performance Libraries, Parallelism,
Multithreading, Language Extensions

 Accelerated NumPy/SciPy with Intel®
MKL1 & Intel® DAAL2

 Data analytics, machine learning & deep
learning with scikit-learn, daal4py

 Scale with Numba* & Cython*

 Includes optimized mpi4py, works with
Dask* & PySpark*

 Optimized for latest Intel® architecture

 Prebuilt & optimized packages for
numerical computing, machine/deep
learning, HPC, & data analytics

 Drop in replacement for existing Python-
No code changes required

 Jupyter* notebooks, Matplotlib included

 Free download & free for all uses
including commercial deployment

 Supports Python 2.7 & 3.6, optimizations
integrated in Anaconda* Distribution

 Distribution & optimized packages available
via Conda, PIP, APT GET, YUM, & DockerHub,
numerical performance optimizations
integrated in Anaconda Distribution

 Optimizations upstreamed to main Python
trunk

 Priority Support with Intel® Parallel Studio XE

1Intel® Math Kernel Library
2Intel® Data Analytics Acceleration Library

Prebuilt & Accelerated Packages

Accelerate Python* with Intel® Distribution for Python*
High Performance Python* for Scientific Computing, Data Analytics, Machine & Deep Learning

Learn More: software.intel.com/distribution-for-python

https://software.intel.com/en-us/c-compilers
https://software.intel.com/en-us/c-compilers
https://software.intel.com/en-us/c-compilers

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
10

scikit-learn

Accelerating Machine Learning

Intel® Data Analytics Acceleration
Library (DAAL)

Try it out! conda install -c intel scikit-learn

daal4py

Intel® Math Kernel
Library (MKL)

Intel® Threading
Building Blocks (TBB)

PCA
KMeans
LinearRegression
Ridge
SVC
pairwise_distances
logistic_regression_path

Use directly for
• Scaling to multiple nodes
• Pickable
• Non-homogeneous

dataframes
• Streaming data

Scikit-Learn
Equivalents

Scikit-Learn API
Compatible

daal4py.sklearn

Intel®
MPI

KNeighborsClassifier
RandomForestClassifier
RandomForestRegressor

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

Accelerating scikit-learn through daal4py

> python -m daal4py <your-scikit-learn-script>
Monkey-patch any scikit-learn

on the command-line

import daal4py.sklearn
daal4py.sklearn.patch_sklearn()

Monkey-patch any scikit-learn
programmatically

Scikit-learn with daal4py patches applied
passes scikit-learn test-suite

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® DAAL Algorithms supported by daal4py
Data Transformation and Analysis

Basic statistics
for datasets

Low order
moments

Variance-
Covariance

matrix

Correlation and
dependence

Cosine
distance

Correlation
distance

Matrix factorizations

SVD

QR

Cholesky

Dimensionality
reduction

PCA

Outlier detection

Association rule
mining (Apriori)

Univariate

MultivariateQuantiles

Order
statistics

Optimization solvers
(SGD, AdaGrad, lBFGS)

Math functions
(exp, log,…)

Algorithms supporting batch, online and/or distributed processing

Algorithms supporting batch processing

12

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® DAAL Algorithms supported by daal4py
Machine Learning

Supervised
learning

Regression

Linear
Regression

Classification

Weak
learner*

Boosting*

(Ada, Brown, Logit)

Naïve Bayes

kNN

Support Vector Machine

Unsupervised
learning

K-Means
Clustering

EM for GMM

Collaborative
filtering

Alternating
Least

Squares

Ridge
Regression

Algorithms supporting batch, online and/or distributed processing

Algorithms supporting batch processing

Decision Forest

Decision Tree

GradientBoosting

*Expected with DAAL® 2020

13

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
14

import daal4py as d4p

daal4py accepts data as CSV files, numpy arrays or pandas dataframes
here we let daal4py load process-local data from csv files
data = "kmeans_dense.csv"

Create algob object to compute initial centers
init = d4p.kmeans_init(10, method="plusPlusDense")
compute initial centers
ires = init.compute(data)
results can have multiple attributes, we need centroids
centroids = ires.centroids
compute initial centroids & kmeans clustering
result = d4p.kmeans(10).compute(data, centroids)

K-Means using daal4py

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
15

import daal4py as d4p

initialize distributed execution environment
d4p.daalinit()

daal4py accepts data as CSV files, numpy arrays or pandas dataframes
here we let daal4py load process-local data from csv files
data = "kmeans_dense_{}.csv".format(d4p.my_procid())

compute initial centroids & kmeans clustering
init = d4p.kmeans_init(10, method="plusPlusDense", distributed=True)
centroids = init.compute(data).centroids
result = d4p.kmeans(10, distributed=True).compute(data, centroids)

mpirun -n 4 python ./kmeans.py

Distributed K-Means using daal4py

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

Strong & Weak Scaling via daal4py
Hardware

Intel(R) Xeon(R) Gold 6148 CPU @
2.40GHz, EIST/Turbo on

2 sockets, 20 Cores per socket

192 GB RAM

16 nodes connected with Infiniband

Operating
System

Oracle Linux Server release 7.4

Data Type double

On a 32-node cluster (1280 cores) daal4py computed K-
Means (10 clusters) of 1.12 TB of data in 107.4 seconds and
35.76 GB of data in 4.8 seconds.

On a 32-node cluster (1280 cores) daal4py computed linear
regression of 2.15 TB of data in 1.18 seconds and 68.66 GB
of data in less than 48 milliseconds.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

Scalable Python Solutions in Incubation

HPAT daal4py

• Statically compiles analytics code to binary

• Simply annotate with @hpat.jit

• Built on Anaconda Numba compiler

Drop-in acceleration of Python ETL
(Pandas, Numpy & select custom Python)

Ease-of-use of scikit-learn
+ Performance of DAAL

Automatically scales to multiple nodes with MPI

• High-level Python API for DAAL

• 10x fewer LOC wrt DAAL for single node,

100x fewer LOC wrt DAAL for multi-node

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
20

Software Architecture

ParallelAccelerator

HPAT

Numba

LLVM

Distributed-memory parallelism, Data I/O, Data frames

Loop parallelism (Numpy, explicit), shared-memory

Compile sequential Python/Numpy

Binary code generation

Now in
Numba

MPI parallel runtime

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
21

HPAT’s Scope of Functionalities (Technical Preview)

Operations

• Python/Numpy basics

• Statistical operations (mean, std, var, …)

• Relational operations (filter, join, groupby)

• Custom Python functions (apply, map)

Data

• Missing values

• Time series, dates

• Strings, unicode

• Dictionaries

• Pandas

Interoperability
• I/O integration (CSV, Parquet, HDF5, Xenon)

• Daal4py integration

Extend Numba to support

https://github.com/IntelPython

22

https://github.com/IntelPython

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
23

Questions?

Intel® Distribution for Python*
https://anaconda.org/intel
https://software.intel.com/en-us/distribution-for-python
https://intelpython.github.io/daal4py
https://github.com/IntelLabs/hpat

https://software.intel.com/en-us/distribution-for-python

24

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
25

Accelerating pandas CSV read

Intel(R) Xeon(R) CPU E5-2699 v4: 2.20GHz;
1chreads per core; 22 cores per socket; 2 sockets
Intel(R) Xeon(R) Platinum 8175M CPU: 2.50GHz; 2
threads per core; 24 cores per socket; 2 sockets
Skylake 8180 S2P2C01B: 2.5GHz
1 thread per core; 28 cores per socket; 2 sockets

Patches merged to pandas mainline:
https://github.com/pandas-dev/pandas/pull/25804
https://github.com/pandas-dev/pandas/pull/25784

70x-81x
speedup

https://github.com/pandas-dev/pandas/pull/25804
https://github.com/pandas-dev/pandas/pull/25784

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
26

$ mpirun -n 4 python ./process_times.py

Accelerating Pandas using HPAT

import pandas as pd
import hpat

@hpat.jit
def process_times():

df = pq.read_table(‘data.parquet’).to_pandas();
df[‘event_time’] = pd.DatetimeIndex(df[‘event_time’])
df[‘hr’] = df.event_time.map(lambda x: x.hour)
df[‘minute’] = df.event_time.map(lambda x: x.minute)
df[‘second’] = df.event_time.map(lambda x: x.second)
df[‘minute_day’] = df.apply(lambda row: row.hr*60 + row.minute, axis = 1)
df[‘event_date’] = df.event_time.map(lambda x: x.date())
df[‘indicator_cleaned’] = df.indicator.map(lambda x: -1 if x == ‘na’ else int(x))

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
27

Xeon
Close to native code Umath Performance with Intel Python 2019
Compared to Stock Python packages on Intel® Xeon processors

0%

20%

40%

60%

80%

100%

ar
ra

y*
ar

ra
y

ar
ra

y*
sc

al
ar

ar
ra

y+
ar

ra
y

ar
ra

y+
sc

al
ar

ar
ra

y-
ar

ra
y

ar
ra

y-
sc

al
ar er

f

ex
p

in
vs

q
rt

lo
g1

0

Problem Size = 2.5M

P
er

fo
rm

an
ce

 E
ff

ic
ie

n
cy

 m
ea

su
re

d

ag
ai

n
st

 n
at

iv
e

co
d

e
w

it
h

 In
te

l®
 M

K
L

Stock Python Intel® Distribution for Python 2019

Configuration: Stock Python: python 3.6.6 hc3d631a_0 installed from conda, numpy 1.15, numba 0.39.0, llvmlite 0.24.0, scipy 1.1.0, scikit-learn 0.19.2 installed from pip;Intel Python: Intel Distribution for
Python 2019 Gold: python 3.6.5 intel_11, numpy 1.14.3 intel_py36_5, mkl 2019.0 intel_101, mkl_fft 1.0.2 intel_np114py36_6,mkl_random 1.0.1 intel_np114py36_6, numba 0.39.0 intel_np114py36_0, llvmlite
0.24.0 intel_py36_0, scipy 1.1.0 intel_np114py36_6, scikit-learn 0.19.1 intel_np114py36_35; OS: CentOS Linux 7.3.1611, kernel 3.10.0-514.el7.x86_64; Hardware: Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz (2
sockets, 18 cores/socket, HT:off), 256 GB of DDR4 RAM, 16 DIMMs of 16 GB@2666MHz
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you
in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Source: Intel
Corporation - performance measured in Intel labs by Intel employees. Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of
any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to
Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this
notice. Notice revision #20110804.

87%
native efficiency on

Black-Scholes Formula code
with Intel numpy + numba.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
28

Xeon
Close to native code scikit-learn Performance with Intel Python 2019
Compared to Stock Python packages on Intel® Xeon processors

0%

20%

40%

60%

80%

100%

1K x 15K 1K x 15K 1M x 50 1Mx50 1M x 50 1M x 50 1M x 50 1M x 50 10K x 1K 10K x 1K

cosine dist correlation dist kmeans.fit kmeans.predict linear_reg.fit linear_reg.predict ridge_reg.fit ridge_reg.predict svm.fit
(binary)

svm.predict
(binary)

P
er

fo
rm

an
ce

 E
ff

ic
ie

n
cy

 m
ea

su
re

d

ag
ai

n
st

 n
at

iv
e

co
d

e
 w

it
h

 In
te

l®

D
A

A
L

Function & Problem Size

Stock Python Intel® Distribution for Python 2019

Configuration: Stock Python: python 3.6.6 hc3d631a_0 installed from conda, numpy 1.15, numba 0.39.0, llvmlite 0.24.0, scipy 1.1.0, scikit-learn 0.19.2 installed from pip;Intel Python: Intel Distribution for
Python 2019 Gold: python 3.6.5 intel_11, numpy 1.14.3 intel_py36_5, mkl 2019.0 intel_101, mkl_fft 1.0.2 intel_np114py36_6,mkl_random 1.0.1 intel_np114py36_6, numba 0.39.0 intel_np114py36_0, llvmlite
0.24.0 intel_py36_0, scipy 1.1.0 intel_np114py36_6, scikit-learn 0.19.1 intel_np114py36_35; OS: CentOS Linux 7.3.1611, kernel 3.10.0-514.el7.x86_64; Hardware: Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz (2
sockets, 18 cores/socket, HT:off), 256 GB of DDR4 RAM, 16 DIMMs of 16 GB@2666MHz
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you
in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Source: Intel
Corporation - performance measured in Intel labs by Intel employees. Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of
any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to
Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this
notice. Notice revision #20110804.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
29

RandomForest

• daal4py.sklearn.ensemble.RandomForestClassifier
• daal4py.sklearn.ensemble.RandomForestRegressor

• only support dense features, and single response
• produce similar output to scikit-learn’s own classes, i.e. populate estimators_ attribute,

so that it can be used in existing Python viz. pipeline.
• prediction is using DAAL’s model, rather than estimators_

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

31

The benchmark results reported above may need to be revised as additional testing is conducted. The results depend on the specific platform configurations and
workloads utilized in the testing, and may not be applicable to any particular user’s components, computer system or workloads. The results are not necessarily
representative of other benchmarks and other benchmark results may show greater or lesser impact from mitigations.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark
and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause
the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation
in the U.S. and other countries.

31

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

